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19. the overall duration of occupation of each site was too short to permit a
reliable characterization of seasonal noise variations.

We concluded that:
1. In general, noise levels in the boreholes were affected by wind conditions

to a much smaller degree than were the surface emplacements.

2) Wind did not become a noticeable source of noise at the surface emplacements
until a minimum wind speed was reached (typically 4 to 5 m/sec).

3. At frequencies between 3 and 10 Hz, surface and boreholi noise levels were
comparable. However, downhole noise levels at higher frequencies were
greatly reduced.

4. In the 3-10 Hz band, surface and borehole emplacements in the western US
were generally quieter than those in Kazakhstan.

5. In the 10-80 Hz band, surface installations in the western US were
considerably noisier than surface installations in Kazakhstan, but
borehole installations in both regions yielded comparable noise levels.
We suspect that the difference in surface vault quality between the two
sets of stations is a significant factor. In this frequency band the
borehole noise levels were lower than the surface at all stations.



Summary

Seismographic stations were operated for several months during 1987 at three sites
within 250 km of the Kazakh Test Site (KTS) in the U.S.S.R. and through most of 1988
and early 1989 at three sites within 250 km of the Nevada test site (NTS) in the U.S. The
three Soviet sites included Karkaralinsk (KKL), Bayanaul (BAY), and Karasu (KSU), and
the three U.S. stations were located at Nelson, NV (NEL), Deep Springs, CA (DSP), and
Troy Canyon, NV (TRC). All six stations were equipped with high-frequency, three
component surface (1-80 Hz) and borehole (.2-80 Hz) instruments.

We have analyzed nearly 2,000 recordings of ambient ground noise collected at the
U.S. stations and have systematically reexamined several hundred noise measurements
from the U.S.S.R. sites in order to compare surface and borehole noise levels among the
six locations. Wind speed was recorded during most of the deployment at each site, making
possible a comparison of thc noise levels ac each station as a function of wind speed. The
operational periods yielded data covering a reasonable sampling of meteorological
conditions, although the overall duration of occupation of each site was too short to permit
a reliable characterization of seasonal noise variations.

We conclude that:

1. In general, noise levels in the boreholes were affected by wind conditions to a much
smaller degree than were the surface emplacements.

2. Wind did not become a noticeable source of noise at the surface emplacements until a
minimum wind speed was reached (typically 4 to 5 n/sec).

3. At frequencies between 3 and 10 Hz, surface and borehole noise levels were
comparable. However, downhole noise levels at higher frequencies were greatly
reduced.

4. In the 3-10 Hz band, surface and borehole emplacements in the western U.S. were
generally quieter than those in Kazakhstan.

5. In the 10-80 Hz band, surface installations in the western U.S. were considerably
noisier than surface installations in Kazakhstan, but borehole installations in both
regions yielded comparable noise levels. We suspect that the difference in surface vault
quality between the two sets of stations is a significant factor. In this frequency band
the borehole noise levels were lower than the surface at all stations.
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ANALYSIS OF HIGH FREQUENCY SEISMIC NOISE IN TIlE
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J. BERGER, R. ASTER

INSTITUTE OF GEOPHYSICS AND PLANETARY PHYSICS
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1. Introduction

Seismographic stations were operated for several months during 1987 at three sites

within 250 km of the Kazakh Test Site (KTS) in the U.S.S.R. (Berger et al., 1988) and

through most of 1988 and early 1989 at three sites within 250 km of the Nevada test site

(NTS) in the U.S. The three Soviet sites -Karkaralinsk (KKL), Bayanaul (BAY), and

Karasu (KSU)- are shown in Figure 1 and the locations of the three U.S. stations -Nelson

(NEL), Deep Springs (DSP), and Troy Canyon (TRC)- are given in Table I and depicted

in Figure 2. All six stations were equipped with high-frequency, three component surface

(1-80 Hz) and I(X) m deep borehole (.2-80 tz) instruments. The U.S. stations were also

equipped with broad band seismometers (.0027 to 10 Hz), but data from these instruments

are outside the frequency range of interest to this study and will not be discussed.

Table 1: Locations of the western U.S. stations used in this study.

Station Name Latitude Longitude Elevation

Nelson (NEL) 350 39.02" N 1140 50.65" W 1326 m

Deep Springs (DSP) 370 22.17" N 1170 58.45" W 1692 m

Troy Canyon (TRC) 380 20.98" N 1150 35.11" W 1815 m
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We have analyzed nearly 2,(X)0 recordings of ambient ground noise collected at the

U.S. stations and ,ave systematically reexamined several hundred noise measurements
from the U.S.S.R. sites in order to compare surface and borehole noise levels among the

six locations. Wind speed was recorded during most of the deployment at each site, m:ting

possible a comparison of the noise levels at each station as a function of wind speed.

Noise samples were generally taken at the same time each day, so that our data set does not

permit a study of diurnal variation of noise levels. The operational periods yielded data

covering a reasonable sampling of meteorological conditions, although the overall duration

of occupation of each site was too short to permit a reliable characterization of seasonal

noise variations. Before discussing these data, we will give a brief description of the

geologic setting and seismic equipment.

2. Station description

Berger et a]. (1988) gave a detailed description of the U.S.S.R. equipment and sites;

therefore we shall focus on the U.S. seismographic sites and equipment and recall briefly

the characteristics of the Soviet stations for comparison.

2. 1. Station Setting

The three U.S. stations were located in the tectonically active Basin and Range
Province of the western U.S. At each site the seismic vaults were built on granitic

intrusions outcropping near the base of mountain ranges (Table 2). E-arthquakes in the

Basin and Range are generally shallow (<15 kin) and fault plane Solutions reflect the

extensional tectonics of the region (e.g. Smith and Sbar, 1974). The heat flow is high and

the upper mantle velocity is relatively low -7.8 to 7.9 km/sec (Stewart, 1978; Priestley et

al., 1982)-. The crust beneath southern Nevada is 25 to 30 km thick (Davis, 1980) and

the region is generally in isostatic equilibrium at crusta, depths (Stewart, 1978).

Table 2.: Rock type and reference for the western U.S. stations used in this study.

Station Rock Type Age Reference

NEL Medium-grained quartz 35 My (Pb-Pb), L 1l (1963)monzonite to granite 27 My (K-Ar)

DSP Granodiorite, variable texture 170 ± 5 My (K-Ar) McKee (1968)

TRC Medium-grained quartz Mesozoic Cebull (1970)monzonile
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In contrast Eastern Kazakhstan is largely aseismic, with a thick crust (about 50 kin),

low heat flow and high Pn velocity (8.3 to 8.5 km/sec at Karkaralinsk and Bayanaul, and

8.0 to 8.2 knVsec at Karasu, Leith, 1987). Studies have concluded that both the Curie

isotherm and the isostatic compensation depth extend into the mantlL (Belyaevsky et al.,
1!98 1).

All three Soviet stations were located in late Paleozoic to early Mesozoic granitic

intrusions thought to he similar to the Degelen test site intrusives. Although they extend as

much as a hundred square miles at the surface, .eismic investigations conducted near

Karkaralinsk indicate that such intrusions are mushroom-shaped and narrow with depth

(Leith, 1987). Gravity studies near Karasu found that the granitic intrusion has a lower

density than the surrounding highly deformed Paleozoic sedimentary and metamorphic rock

(Leith, 1987).

Significant differences between the regins sampled in this study were observed during

large chemical explosion experiments in the U.S.S.R. and U.S. in 1987 and 1988

respectively (Given et al., 1989). At comparable epicentral distances and for the same

explosion yields, signals r-,'rrded in the Soviet Union were very strong, while the signals

recorded at the U.S. stations barely exceeded the noise level. Thls is thought to reflect

higher seismic attenuation in the crust and upper mantl in the western U.S. than in

Kazakhstan.

2.2. Vault Construction

The vaults at U.S. stations were small cement buildings constructed on granitic bed

rock. A small excavation, no more than a meter deep, was blasted in the rock and the site
was scraped clean in preparation for vault construction. A 100 rn well for the borehole

instruments was then drilled within the boundaries of the vault, and cased prior to pouring

the cement floor. Surface seismometers were placed directly on the vault floor, and the

broad-band instruments were installed in a shallow 10 m borehole drilled just outside the

vault. After the vault was constructed, the structure was covered with a dirt mound to

reduce its wind profile.

The vaults in the U.S.S.R. were also dug in granite, but with a greater excavation.

They were completely buried and so had a very low wind profile. As in the case of the

U.S. installations, the wellhead for the borehole instruments was located within the vault,

but surface seismometers were installed on a large cement pier decoupled from the vault

floor.
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2.3. Seismographic Equipment and Recording System

As illustrated on Figure 3, three types of three component sensors were deployed at

each U.S. site. Teledyne Geotech 54100 borehole units, each housing three S759

accelerometers, were installed in the approximately 100 m deep boreholes. These

instruments have a response that is flat to acceleration in a 0.2-90 Hz passband. (In

contrast, the U.S.S.R. borehole instruments had been modified to have a flat velocity
response). The surface instruments in both countries were Teledyne Geotech GS-13

velocity sensors. In addition, CMG3 extended broadband sensors, manufactured by

Guralp Systems, were deployed at U.S. sites in shallow 10 ni boreholes. These

instruments have a response fPat to ground velocity from .0027 to 10 Hz. In order to take

advantage of the full dynamic range of the system, all borehole and surface channels were

recorded at both low and high gain. Including the CMG3 seismometers, this resulted in 15

channels of data per site. Broad-band data were not collected at the Soviet sites and will

not be discussed in this study.

The borehole and surface channels were sampled at 250 s.p.s using a Refraction

Technology (RT-97) 16-bit data acquisition system. The CMG3 channels were digitized at

125 s.p.s. The RT-97 also provided 6-pole, low-pass anti-aliasing filters at 80 -nd 40 1 lz

respectively, and adjustable amplification. Timing was provided by a GOES clock, with

the RT-97 internal clock as back-up.

2.4. Detection and Recording System

The data were transmitted digitally by underground cable (Deep Springs) or microwave

link (Nelson and Trov Canyon) to an Earth station, and from thece to the Scripps Institution

of Oeanography via 5(1 Kbps stellite links (Figure 3). A Refraction Technology interface

unit (RT-44C) then collected all 45 channels of data -15 per site- -- into 0.5-second

buffers which were processed on a microVax workstation. The STA/LTA detection

software used in this study was originally (lcvcloped by the U.S.G.S. for the ANZA

network (Berger et al., 1984; and Berger et al., I ,-8)). For each detection, 50 seconds of

pre-trigger and 20 seconds of v ,st-trigger memory were recorded on 9-track tape. The

system w.,, also used in a preset-time modc to record noise. The same detection algorithms

were used in the U.S. and the U.S.S.R.: however, separate data loggers were used

independently at each site in the U.S.S.R., whereas in the telemetered U.S. system, only

events detected at two or more stations were recorded.

6
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2.5. System Responses

Figure 4 shows the system response for the borehole and surface systems in the U.S.

and U.S.S.R. These curves include the seismometer transfer functions, the anti-aliasing
filter, and gain fac;tors for the analog to digital converter. At the high end of the pass-band,
all responses are shaped by the low-pass anti-aliasing filter. The seismometer controlled

the low-frequency shape of the response curve, with the following comers:
• For all surface vault systems (velocity sensors): 1 Hz.
" For all U.S.S.R. borehole systems (velocity sensors): 0.2 Hz
* For U.S. borehole systems (acceleration sensors): 2 Hz prior to June, 1988,

and 0.2 Hz after June, 1988.

2.6. System Noise Performance

To determine the overall systeni noise p,:rformance for the U.S. stations, we performed
identical experiments to thosc. reported in Berger et al. (1988) for the U.S.S.R.

deployment. These included clanping the seismometer mass (for surface seismometers
only) and replacing the seismometer by an equivalent output impedance. The noise
spectrum of the clamp test was dominated by digitizer nui;e and was therefore not used.

Figure 5 summarizes representative results of these system tests. Curve A is a power

spectrum depicting low noise conditions at Deep Springs with the amplifier gain set at 48
dB. Curves B and C are the system noise tests, corrected for the surface and borehole
system responses respectively, with the scismonmeter replaced by an equivalent resistance,
recorded at 48 dB. Curve I) is the theoretical noise level of the borehole seismometers as

supplied by the manufacturer, vhich does not include noise generated in the amplifiers and
filters (Berger et al. 1988). Curve A merges with curve B at 80 liz. As a result, ground
noise is masked by system noise above these frequencies. When the amplifier gain was set

below 48 dB, the ground noise in some ca,;es -was masked by system noise at a lower
frequency (e.g. 40 Hz).

Comparison of curves C and D leads to the conclusion that the internal noise of the
borehole seismometer was well above the digitizer noise at all frequencies. Thus for the
borehole channels, the seismometer noise (curve D) determines the level of the smallest
ground motion detectable. lowever in the analysis of surface data recorded at gains lower

than 48 dB, we had to be careful to distinguish between digitizer noise and ground noise.

8
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Figure 5, Syte- noise performance
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Figure 5. Summary of system noise performance. Curve A is a power spectrum
depicting low noise conditions at Deep Springs with the amplifier gain set at
48 dB. Curves B and C are the system noise tests, corrected for the surface
and borehole system responses respectively, with the seismometer replaced
by an equivalent resistance, and recorded at 48 dB. Curve D is the
theoretical noise level of the borehole seismometers as supplied by the
manufacturer, which does not include noise generated in the amplifiers and
filters (Berger et al. 1988).
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3. Methodology

3. 1. Data Description

Noise recordings were nominally taken at each station once a day, with occasional gaps
of several days. As a result we have sampled a variety of meteorological conditions
(particularly wind speed) over the span of deployment. During May, 1988, the noise level
at Troy Canyon was consistently much higher, at all wind speeds, than during other
months. We attributed this anomaly to spring run-off in a nearby stream and omitted these

data in our analysis. Figure 6 shows the number of available noise samples as a function

of wind speed at each station.

Noise records were typically 70 to 135 seconds long. Each time series was inspected
visually and edited if small seismic events or recording errors were found or discarded if
the record was clearly dominated by digitizer noise. Only those time series with a duration

of 40 seconds or more and for which wind speed was recorded were used. In the end we
selected close to 2,000 noise records from the U.S. stations and about 1,000 from the
Soviet Union.

3.2. Time series analysis

We calculated power spectra using a Hann taper and a section-averaging algorithm with

10 second sections and 50 percent section overlap (e.g. Welch, 1967). The influence of
monochromatic spikes -typically at 50 Hz in the U.S.S.R. and 60 Hz in the USA--- and
their harmonics was reduced by smoothing the spectra with a I Hz running median filter.
A running median was chosen because it removes small extremes in the spectrum (less than
0.5 Hz in bandwidth) without affecting significantly the adjacent noise levels-unlike a
running mean which smears a spike in the data thus increasing the adjacent noise levels and
changing the general shape of the spectrum. We then converted all spectra to acceleration

and removed the system response. Using this procedure, we computed 30 to 60 noise

spectra for each component at each station in the U.S.S.R. and approximately twice as
many from the U.S. data.

Figures 7 through 12 summarize the statistics of noise spectra -acceleration noise
power levels in dB relative to 1 (m/s 2)2/Hz - observed under all wind conditions at each
of the six stations. On each frame are plotted the frequency-by-frequency mean of all

available spectra for the corresponding channel, as well as an individual "high-noise" and

I1



"low-noise" spectrum extracted from this population. The latter were simply selected as the

spectra with the highest and lowest power integrated over the 1-80 Hz band.
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6 6- 6-

Q) Q
4- 4

E
E) 2- 2

0 001 0 ,
0 4 8 0 4 8 0 4

Wind Speed (m/sec) Wnd Speed (rn/sec) Wi-d Speec (rr/sea)

Bayonaul Borehole ot Deep Sprngs Su-fcce at Dee- S-crngs

6 6 6
C), U,

4 a4 a4

E E
o , n , ,o - ~n, ] n ,

4 8 0 4 8 0 4 8
Wind Speec (rn/see) Wnd Speed (rn/see) Wi-a Speec (rn/sea)

Karkarclinsk Rorenole at Ne son S .rfoce at Ne son

6 6 6
(I) C IV)

_ 4  - 4 4.

J) 2 LP 2 ___F

0 hi 0_
0 4 8 0 4 8 0 4 8

Wind Specc (rn/scc) Wind SL~ccd ('n/sec) WI-d Specc (rr/scc)

Figure 6. Histograms of numbet of noise data vs wind speed.
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3.3. Wind conditions analysis

The large number of spectra calculated allowed us to examine in greater detail the noise

dependence on wind speed, for both surface and borehole installations. The results are
summarized in Figures 13 through 18, which show contour plots of noise power versus
wind speed and frequency (each station experienced a different range of wind speeds over

the duration of the deployment, see Figure 6). These contour plots were obtained by
averaging spectra in wind speed "bins" of 0.1 m/s and spline-interpolating the results in

frequency. The grids were produced in log-frequency vs linear-wind speed and smoothed

using a two-dimensional running median (over a 5 grid cell radius). Figures 13 through 18
show considerable variability in the noise character among the various sites, although

general patterns do emerge as discussed below.

4. Results

We shall first give a brief description of the noise character of each station (referring to

figures 7 through 18) and then compare characteristics common to all stations.

4.1. Station noise characteristics

For the U.S.S.R. stations, the noise characteristics at Karkaralinsk (Figures 7 and 13)
and at Bayanaul (Figures 8 and 14) are very similar. The mean surface noise levels at these

stations remain typically within a few dB of the -150 dB level across the spectrum. The
mean borehole noise levels fluctuate about an average level of -153 dB below 10 Hz, and

drop by approximately 3 dB above 10 Hz.

At both stations, borehole noise levels increase very little (< 2 dB) with a 5 m/sec

increase in wind speed, whereas surface noise spectra show a 5 dB increase over the same

range of wind speed. Unfortunately, our data cover a limited range of wind speeds at these

stations (6 m/s at Karkaralinsk and 5 m/s at Bayanaul). Most of the increase in noise level
with wind speed occurs at frequencies above 30 Hz for all channels.

At Karasu, the surface noise is dominated by a site resonance discussed by Berger et al.

(1988), which results in a 30 dB increase near 4 Hz (Figures 9 and 15). Borehole noise,
on the other hand, is only a few dB higher than at the other two Soviet stations and exhibits

a similar character. Wind speeds of up to 10 m/sec were recorded at Karasu. Borehole
noise appears to be even less sensitive, and surface noise more sensitive to wind speed than

at the other two Soviet stations.
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Noise characteristics at U.S. stations were more varied than at the Soviet stations
(Figures 10-12 and 16-18). Surface noise levels range from -168 dB at Troy Canyon and

Deep Springs (at low frequency) to -160 dB at Nelson on quiet days, and rise to -145 dB

(Deep Springs) or even -127 dB (Nelson) on noisy days. Borehole noise levels are

typically -155 to -158 dB at low frequencies and are flat or decreasing with frequency,

dropping to as low as -165 dB at high frequency , with some exceptions at Nelson. The

borehole and surface noise levels at Deep Springs are among the lowest observed at any of

the stations; in fact the borehole noise levels appear to be close to instrument noise.

All the U.S. sites show surface noise levels increasing with wind speed. Wind speeds

of up to 7 m/sec were recorded at Troy Canyon and Nelson. At Deep Springs, some data

were available with wind speeds up to 10 m/sec, however the surface channels were often

set at too low a gain, thereby recording only digitizer noise and resulting in an irregular

contour plot on Figure 17. The surface noise at U.S. stations increases by up to 6 dB
across the spectrum over the range 0-7 m/sec. Over the same range borehole noise levels

increase only by an average of about 3 dB. Nelson shows the highest sensitivity of noise

on wind speed of any of the stations discussed in this paper (20 dB across the 7 m/sec

range in wind speed at frequencies above 20 Hz), and is the only station in which the

increase in borehole noise level with wind speed approaches that of the surface channels.

We believe that the broad spectral peaks seen at high frequencies for some of the borehole

sensors (e.g. 50 Hz at KSU and 60 Hz at DSP, TRC; see Figures 9, 11, 12) are artifact

due to a combination of sources such as the borehole seating mechanism, and feedback

electronics (note the frequencies).

4.2. Surface noise vs borehole noise

In general, borehole noise levels are significantly lower than surface noise levels, but

this is mostly true for frequencies above 10 Hz.

At frequencies below 1 Hz, the spectral shape of surface noise is controlled primarily

by the height of the microseismic peak, which can be measured directly at the U.S. stations

from the broad-band records. On that basis, microseismic noise appears to be considerably

more pronounced at U.S. stations than at the Soviet stations, which comes as no surprise

since the Soviet sites are far removed from the ocean. Borehole noise spectra are likely to

be contaminated by instrument noise at these frequencies (see Figure 5). The

contamination is amplified when we correct the spectra for the system response, which is
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probably the reason why the borehole noise appears to be higher than surface noise near

0.5 Hz at U.S. stations.

Between I and 3 Htz, higher noise levels are often observed in the borehole than at the

surface. This occurs in cases were surfat-e noise levels are lower than the theoretical noise
curve of the borehole sensors (Figure 5). In such cases, the lower limit of ground noise

cannot be resolved on borehole recordings and the mean level recorded is again biased by
the seismometer noise. Therefore, comparisons of surface and borehole data in this

frequency band do not necessarily reflect variation of ground noise levels.

At frequencies between 3 and 10 Hz, the surface and borehole noise levels are

comparable. In general, below 10 liz, both surface and borehole noise levels show very

weak dependence on wind speed.

The dependence of noise level on wind speed is generally stronger at higher frequencies

(above 10 Hz). In the iO-80 Hz band, surface noise levels are considerably higher than

borehole levels (by 3 to 15 dB) and are more sensitive to change in wind speed. The
largest difference between borehole and surface noise is usually found above 20 Hz. This

is roughly the frequency at which the 100 m depth of the borehole exceeds the wavelength

of surface waves. This is also a depth above which high-frequency body waves are rapidly

attenuated (e.g. Malin, 1989).

4.3. Surface noise vs wind speed

No significant correlation between surface noise and wind speed is observed for wind

speeds below 4 m/s; however, for stronger wind conditions, we find a noticeable increase

of I to 2 dB for each increment of wind speed of I rn/s. Wind speed appears to be a noise

controlling factor above this 4 m/s threshold. This is reflected in the abrupt change in

dominant contour directions on Figures 13-18 at or near the threshold. In general, the
highest surface noise levels are found at high frequency for the highest observed wind

speed and the lowest noise levels are observed near 1 Hz at low wind speeds.

4.4. Borehole noise vs wind speed

At all sites except Nelson, we find that noise in the borehole was essentially unaffected

by wind speed over the range of observations; furthermore, this weak dependence was

confined to speeds greater than 4 to 5 m/sec. The anomalous beahvior at Nelson is not

understood.

In general, the lowest noise levels in the boreholes were observed at low wind and high
frequency. The highest noise levels overall occured at frequencies below I Hz, and are
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thought to be related to the microseism peak. In the 3 to 80 Hz band, the highest noise

levels tended to be at frequencies below 10 Hz at high wind.

5. Discussion

5.1. Con;i,.,rison of U.S. and U.S.S.R. stations

At frequencies greater than 10 Hz, surface noise levels at the three U.S. stations are

approximately 5 to 10 dB higher than at Karkaralinsk and Bayanaul. At lower frequencies,

the U.S. sites are quieter. Surface noise levels observed at Karasu are the highest in our

data set, due to a local site effect. In general, surface noise at the U.S. sites increases faster

with frequency and is more sensitive to wind speed than at the Kazakh sites. The contour

plots shown on Figures 13-18 are also more complicated for U.S. stations than for

U.S.S.R. stations. We suspect that this is a result of differences in the vault designs.

Borehole noise spectra computed for the Soviet stations also are somewhat different

from those observed at the American sites. We can distinguish three main regimes:

" Below I liz, the U.S. spectra rise significantly, whereas the U.S.S.R. spectra remain

rather flat. This is consistent with the independent observation made on broad-band

recordings that the microseismic peak is much stronger in U.S. than in Kazakhstan.

Data in the frequency band below .2 1 lz are unavailable at the three stations around the

Kazakh test site, however comparison of broad band noise at the three Nevada stations

with the noise spectrum presented by Given (1990) for the four IRIS stations currently

operating in the Soviet Union indicates that the microseismic peaks in those regions of

the USSR are several dB lower than in southern Nevada.
• In the 1-3 lIz band, the low borehole noise levels are uncertain, however the high noise

samples in the U.S.S.R. are noisier than those in the U.S.
* In the 3-I lI lz band, all spectra are more or less flat, but the levels recorded in U.S. are

lower than those recorded in Kazakhstan.

" In the 10-80 1 lz band, Kazakh spectra typically drop with increasing frequency. A

similar behavior --- flat or decreasing spectrum -- is observed at Dccp Springs. but

some spectra computed for Troy Canyon and Nelson increase through this range.

These trends are weak, however, and there appears to he little variation in overall

spectral levels from site to site at frequencies in excess of 30 1Iz. Although there were

differences in the shape of the borehole noise spectrum between data recorded in the

U.S. and the U.S.S.R., the average noise level in the 10-80 lIz band was similar in

both deployments.
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In the 1-20 1 lz band, the surface noise levels observed at all stations except Karasu are

not systematically different from those recorded at NORESS (e.g. Suteau-tlenson and

Bache, 1988). The NORESS noise spectra calculatcd by Hedlin et at. (1989) show a

strong peak at frequencies below 1 Hz, comparable to our observations for U.S. sites.

Where borehole noise is concerned, our re;ults in the 1 to 20 Hz band are comparable to

those obtained for the Regional Seismic Test Network stations (Rodgers et al., 1987); at

Deep Springs, noise levels in the same band are within a few dB of the low levels reported

by Li et al. (1984) for Lajitas, Texas (see Berger et al., 1988, Figure 11). The low noise

levels observed at the stations described in this study can be attributed at least in part to the

fact that they are all located in remote areas, thus minimizing cultural noise.

We suspect that the high frequency surface noise levels at the Soviet stations were

lower than those of the U.S. stations at least partly as a result of differences in the vault

designs. This conclusion is supported by the fact that a similar relationship was not

observed in borehole noise levels. In particular, the smaller surface vaults in the U.S.

were exposed to environmental noise sources to a greater extent than the larger

subterranean Soviet vaults, in which surface instruments were actually placed on a pier

decoupled from the vault itself (Berger et al., 1988).

5.2. Comparison of Surface and Borehole Emplacements

In the 3 to 80 lz band, borehole noise appears to be lower than surface noise at all

stations. We have plotted on Figure 19 the ratio of surface to borehole noise levels on the

vertical components at Bayanaul (curve A) and Troy Canyon (curve B) under low wind

conditions (less than I m/see). In the 10 to 80 Hz band, curve A, typical of all three

components at Bayanaul and Karkaralinsk, indicates that the surface noise is 4 to 11 dB

higher than the borehole noise. Curve B, which is typical for all components at U.S. sites,

shows a ratio ranging from 3 to 20 dB in the 10 to 80 Hz band. At all sites but Nelson,

this ratio increases with wind speed. In this frequency range, the surface to borehole noise

ratio typically increases suddenly at 5 rn/sec, by 3 dB for Soviet stations and 6 dB for U.S.

stations. Thus, borehole emplacement of seismometers greatly improves data quality at
frequencies above 10 Hz. Between 3 and 10 Hz, borehole and surface noise levels may

not differ nearly as much.

In a study at three mines in Sweden, Bath (1973) reported that the 8 to 33 Hz noise

levels observed at a depth of 100 m were reduced in amplitude to about 13 % of that

observed at the surface, a difference of about 18 dB. This is similar to our results for the

noisier of the U.S. stations in the 10 to 80 Hz band. The U.S.S.R. stations experienced
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less noise reduction at these frequencies, however. This suggests that vault design

improvements alone may help reduce surface noise levels at higher frequencies (greater

than 10 Hz) by up to 10 dB. At lower frequency (3 to 10 liz) the superior vault

construction in the Soviet Union apparently did not greatly affect this noise ratio.

25

20-

15 . -

Fiur 19 Sufc to" borhol nos rai t )Baa ladB)To ayn

m. .V3

0.,

/K A
-'0 /,

/.

- I II I I ' ',I:' I I

100 1 "J'

Fr-equency (H~z)

Fiue1. Surface to borehole noise ratio at: A) Bayanaul and B) Troy Canyon.

30



6. Conclusions

From an analysis of several hundred surface and borehole noise samples collected in

1987 at three sites in Kazakhstan and 2,000 samples collected in 1988-89 at three sites in

the western United States, we conclude that:

I. In general, noise levels in the 1(X) m deep boreholes were affected by wind conditions

to a much smaller degree than were the surface emplacements.

2. Wind did not become a noticeable source of noise at the surface emplacements until a

minimum wind speed was reached (typically 4 to 5 m/sec).

3. Between 3 and 10 liz, surface and borehole noise levels were comparable, but

downhole noise levels were strongly reduced at higher frequencies.

4. Between 3 and 10 Hz, surface and borehole emplacements in the western U.S. were

generally quieter than those in Kazakhstan.

5. At high frequencies, in the 10-80 Hz band, surface installations in the western U.S.

were considerably noisier than surface installations in Kazakhstan, but borehole

installations in both regions yielded comparable noise levels. We suspect that the

difference in surface vault quality between the two sets of stations is a significant

factor. In this frequency band, borehole noise was lower than surface noise at all

stations.
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